UNIT TESTING WITH JUNIT

Software Engineering Class

Prof. Adriano Peron Valerio Maggio, Ph.D. Candidate
May, 28th 2013 valerio.maggio@unina.it

mailto:valerio.maggio@unina.it
mailto:valerio.maggio@unina.it

BRIEF INTRO TO THE CLASS

o . —\ p - R &
It's about UmtTestmg/ SIS It's about JUmt/
N\ N

i k.
[t's about
Unit Testing

with JUnit

i &

You sgzz.g

DISCLAIMER

S N

~Thisis not a Tutorial Class
N\ 7

» At the end of the class you (should)...
. .have learnt something more about unit testing;
2. .have learnt what is |Unit, how to use it and when;

3. .have realized how much important are testing activities!

(maybe you already noticed !

that slides are in English...) g
| m—

JUNIT PRELIMINARIES

* Q: How many “types” of testing do you know!

* A: System Testing, Integration Testing, Unit Testing....

- Q: How many “testing technigues’ do you know!

ERE e BoxX and Vvnite Box lesting

Which Is the difference!?

- Q: What type and technigue do you think |Unit covers!?

JUNIT WORDS CLOUD

a.k.a. some random words (almost) related to [Unit

Testing xUnit Java

P———

. . Testing framework
Unit Testing — —

Test Surte

Black Box [esting

R —

Testing Automation

| ra— T

st Fratulres
Simple Test Program 75 Test Runners

L — — — T

JUNIT JUMPSTART

e IMPORITANCE OF |

Never In the field of software
development was so much owed
by so many to so few lines of
code

Martin Fowler

THE IMPORTANCE OF TESTING

* During development, the first thing we do Is run our own
Drogram

* This is (sometimes) called Acceptance lesting

WHO ARE THESE TWO GUYS!

Design

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

Foreword by Grady Booch

Patterns

5 o

Creators of the
xUnit
Framework

Erich Gamma

Kent Beck

%trreme .
ogramming
%lained

EMBRACE CHANGE

KENT BECK
witi CYNTHIA ANDRES

Second Edition
2650840 EQiilom

XUNIT FRAMEWORK

7 N
* A framework is a semi-complete application that provides a

reusable, common structure that can be shared between
applications.

* Developers incorporate the framework in their own

| e siEdTion an extend it to meet tnelr Specific Heeds!
R

J .
« Unit Test: A unit test examines the behavior of a
distinct unit of work.

» The “distinct unit of work™ Is often (but not always) a
single method.

~

XUNIT DESIGN

JUnit 3.x design was

. . . <<interface>> i
compliant with xUnit Test
framework guidelines .

N

7/ N
| — —

- JUnit e
- CppUnit i <]

L PyUnit TestCase ‘ TestSuite .
- NUnit

- XMIEG R
- Pl

ot MyTestCase
- SUnNit y

l

WHY A FRAMEWORK IS NEEDED?

Let's do a very dummy example...

4 &
public class Calculator {

public double add(double numberl, double number?2) {
return numberl + numberZ;

}
}

N e

Q: How would you test this method?

VERY SIMPLE TESTING STRATEGY

¥
public class TestCalculator {

public static void main(String

args) {

Calculator calculator = new Calculator();
double result = calculator.add(10,50);

if (result != 60){

System.out.println("Bad result: " + result);

Y// end 1if
Y//end main

Q: How would you improve It/

IMPROVED (NAIVE) SOLUTION

&

’/;ublic class TestCalculator {
private int nbErrors = 0;

public void testAdd() {
Calculator calculator = new Calculator();
b double result = calculator.add(10, 50);
if (result != 60) {
throw new RuntimeException("Bad result: " + result);
}
}

public static void main(String[] args) {

TestCalculator test = new TestCalculator();
try {

test.testAdd();
} catch (Throwable e) {

test.nbErrors++;

e.printStackTrace();

}

if (test.nbErrors > 0) {
throw new RuntimeException("There were " + test.nbErrors +
" error(s)");

}
Y// end main

LESSON LEARNED

S R

Objective Test + Repeatable Test | = l Simple Test Program |

N | | 7

Disclaimer:
The previous example
showed a naive way to test
(a.k.a. the wrong one)

That was not |Unit!

JAVA UNIT TESTING FRAMEWORK

* JUnit is a simple, open source framework to write and run repeatable
eSS,

* It 1s an instance of the xUnit architecture for unit testing frameworks.

* (source: http://junit.org)

* JUnit features include;
» Assertions for testing expected results
» Jest fixtures for sharing common test data

BlE Brlinners for running tests

NI 3. X DESIGN RUEES

« All the Test classes must extend TestCase
* Functionalities by Inherrtance

* All the test method's names must start with the “keyword”
test n order to be executed by the framework

- testSomething(...)

- testSomethingElse()

JUNIT TEST EXAMPLE

S
import junit.framework.TestCase;

public class TestCalculator extends Test(Case {

public void testAdd() {
Calculator calculator = new Calculator();
double result = calculator.add(10, 50);
assertEquals(6@, result, 0);

JUNIT 4.X DESIGN

* Main features inspired from other Java Unit Testing Frameworks

e TestNG
« [est Method Annotations

B allites [avas + Instead of Java |2+

* Main Method Annotations
- @Before, @After
* @lTest, @Ignore

« @SuiteClasses, @RunWith

JUNIT TEST ANNOTATIONS

e @Test public void method()

« Annotation @Test identifies that this method is a test method.

e @Before public void method()

« Will perform the method() before each test.
s lfIs method can prepare the test environment

 £.g read input data, inrtialize the class, ...

e @QAfter public void method()

JAVA ANNOTATIONS AT GLANCE

* Meta Data lagging
e Java. lang.annotation
* java. lang.annotation.ElementType
R RBEIED
« METHOD
« CLASS
* Target
» Specify to which ElementType Is applied

 Retention

» Specify how long annotation should be available

@TEST ANNOTATION

package org.junit;

@java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
@java.lang.annotation.Target({java.lang.annotation.ElementType .METHOD})

public @interface Test {
java.lang.Class<? extends java.lang.Throwable> expected() default org.junit.Test.None.class;

long timeout() default OL;

static class None extends java.lang.Throwable {
private static final long serialVersionUID = 1L;

private None() { /* compiled code */ }

JUNIT ANNOTATIONS (2)

e @Ignore
» Will ignore the test method

» E.g. Useful if the underlying code has been changed and the test has not yet
been adapted.

e @Test(expected=Exception.class)

» Tests If the method throws the named exception.

e @Test(timeout=100)

- Falls If the method takes longer than 100 milliseconds.

JUNIT ASSERT STATEMENTS

assertNotNull([message], object)

 Test passes if Object is not null.
assertNull([message], object)

s i Object'is null.
assertEquals([message],expected, actual)
« Asserts equality of two values
assertTrue(truelfalse)

» Test passes if condition is True
assertNotSame([message], expected, actual)
» Test passes If the two Objects are not the same Object
assertSame([message], expected, actual)

B e il the two Objects are the same Object

TESTING EXCEPTION HANDLING

try-catch trick!

-

import org.junit.TestCase;
public class TestCalculator extends Test(Case {

public void testThatSummationRaisesAnExceptionOnNegativeInputNumbers(){

try {
Calculator calculator = new Calculator();

calculator.add(-1, -3);

this.fail(); // Fail the test if no exception has been thrown!
} catch (RuntimeException) {

this.assertTrue(True); // Pass the test! ;)

}

BESING | HE EXCEP TION HANDLHNES
THE NEW WAY!

Use the expected parameter of @Test annotation

o/

import org.junit.Test;
public class TestCalculator {

@Test(expected=RuntimeException.class)

public void testThatSummationRaisesAnExceptionOnNegativeInputNumbers(){
Calculator calculator = new Calculator();
calculator.add(-1, -3);

¥y // This 1is very short, isn't it?!

TESTCALCULATOR |JUNIT 4

public class Calculator { N
public double add(double numberl, double number?2) {
return numberl + numberZ;
}
™ 8
- \.

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class TestCalculator {

TestAnnotation
@TeSt N = -

public void testThatSummationOnTwoNumbersReturnsTheCorrectValue(){
Calculator calculator = new Calculator();
double result = calculator.add(10, 60);

assertEquals(60, result, 0);

¥
J \ JUnrit Assert

B ——

THIE T EST HAIES

(@5 equeciad)
-

l~~lllﬂﬂ‘l'ﬂ'lﬂﬂﬂ.i.iiiiﬂllIﬂ‘l'l'llﬂﬂ.i.iiiiilllﬂ‘iﬂl.llﬂﬂli.iiiii]

A

il Bk + 3
b7 w1 TestCalculator (lectures.softeng)
! testThatSummationOnTwoNumbersReturnsTheCorrectValue

%% Done:1of 1 Failed: 1(0.018s)
/System/Library/Java/JavaVirtualMachines/1.6.0. jdk/Contents/Home/bin/java -ea -Didea.launcher.port=7535 "-Didea.launcher.bin.pa

java.lang.AssertionError:
Expected :60.0

Actual :70.0
<Click to see difference>

=0
=
at org.junit.Assert.fail()
- at org.junit.Assert.failNotEquals()
" at lectures.softeng.TestCalculator.testThatSummationOnTwoNumbersReturnsTheCorrectValue(TestCalculator. java:18)
?
Process finished with exit code 255

IDE: Intelll] IDE- SRS

| e—

http://www.jetbrains.com/idea/
DRRER——

http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

REFERENCES 1/2

Professional Java JDK 5 Edition
Richardson et. al., Wrox Publications 2006

Professional

Java
JDK 5 Edition

W Clay Richaedson, Donald Avondolo, Joo Vitaks, Soot Schvapee, Mark W Aachedl, ol S n

JUnit in Action, 2nd Ed.
Massol et al., Manning Pubs 2009

REFERENCES 2/2

Simple Smalltalk Testing:
With Patterns

Kent Beck,
First Class Software, Inc.
KentBeck@compuserve.con

"This software and documentation is provided as a service to the programming community, Distrbute it free as you see it First Class Software, Inc. provides no warmanty of any kind, express or implied
(Transeribed to HTML by Ron Jeffries. The software s available for many Smalltalks, and for C++, on my FIP site)
Smallalk has suffered because it lacked atesing cultre, This column describes a simple testing sraegy and a framework to support it, The testing strategy and framework are not intended to be complete solutions,
butrather startng point rom which industrial strength tools and procedures can be constucted.
‘The paper is divided into three sections:

+ Philosophy - Describes the philosophy of writng and running tests embodid by the framework. Read this sction for general background.

+ Cookbook - A simple patiem system for wriing your own tets.

o Framework - A literate program version of the testing framework. Read this for in-depth knowledge of how the framework operaes.
o Example - An example of using the testing framework to kst part of the methods in Set.

T don't ke user interface-based tests. In my experience, tests based on user interface scrpts ar too briteto be useful, When [was on a project where we used user interface teting, it was common o amive in the
moming to & testreport with twenty orthirty fadled tests. A quick examination would show that mostor allof the falures were actually the program running as expected. Some cosmetic change in the interface had
caused the actual output to no longer match the expected output. Our estes spent more time keeping the tests up o date and tracking down fase failures and false successes than they did writng new tess.

My solution i to writethe tests and check results in Semallalk, Whillethis approach has the disadvantage that your estes ned 10 be able to wrie simple Smallalk programs, te resulting tess are much more stable,
Fallures and Errors

"The framework disinguishes between fallues and errors, A failue is an anicipated problemn, When you writ ests, you check for expected results, If you geta different answer, that s a filue, An enor s more
catastrophic, a eror conditon you didn't check for,

Unit testing

T recommend that developers write their own uni tests, one per class, The framework supportsthe wriing of sutes oftsts, which can be atached to a class. I ecommend that all classes respond to the message
"testSuit , retuming a suite containing the unittest, recommend that developers spend 25-50% of thei time developing tests.

Integration testing
T recommend that an independent ester wrie integration tsts. Where should the integration tets go? The recent movement of user nterface frameworks to beter programmatic access provides one answer- drive

the user inteface, but do it with the tests. In VisualWorks (the dialect used in the implementation below), you can open an ApplcationModel and begin stufing values into its ValueHolders, causing ll sorts of
havoc, with very lite trouble.

Unit Test Frameworks

Tools for High-Quality Software Development
Paul Hamill, O’Reilly Media 2004

A Language-Independent Overview

Unit Test

Frameworks

b

O’REILLYO Paul Hamill

Kent Beck’s Original Testing EID

Framework Paper
http.//www.xprogramming.com/testfram.htm

http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm

