
UNIT TESTING WITH JUNIT
Software Engineering Class

Valerio Maggio, Ph.D. Candidate
valerio.maggio@unina.it

Prof. Adriano Peron
May, 28th 2013

mailto:valerio.maggio@unina.it
mailto:valerio.maggio@unina.it

BRIEF INTRO TO THE CLASS

It’s about Unit Testing It’s about JUnit+

It’s about
Unit Testing
with JUnit

You say?!

DISCLAIMER

• At the end of the class you (should)...

1. ..have learnt something more about unit testing;

2. ..have learnt what is JUnit, how to use it and when;

3. ..have realized how much important are testing activities!

This is not a Tutorial Class

(maybe you already noticed
that slides are in English...)

JUNIT PRELIMINARIES
• Q: How many “types” of testing do you know?

• A: System Testing, Integration Testing, Unit Testing....

• Q: How many “testing techniques” do you know?

• A: Black Box and White Box Testing

Which is the difference?

• Q: What type and technique do you think JUnit covers?

JUNIT WORDS CLOUD
a.k.a. some random words (almost) related to JUnit

Unit Testing

JavaTesting

Black Box Testing

Testing framework

xUnit

Test Suite

Test Fixtures
Test RunnersSimple Test Program

Testing Automation

JUNIT JUMPSTART

Never in the field of software
development was so much owed

by so many to so few lines of
code

Martin Fowler

THE IMPORTANCE OF TESTING

THE IMPORTANCE OF TESTING
• During development, the first thing we do is run our own

program

• This is (sometimes) called Acceptance Testing

Code Compile Run

Test/Debug

WHO ARE THESE TWO GUYS?

Erich Gamma Kent Beck

Creators of the
xUnit

Framework

XUNIT FRAMEWORK
• A framework is a semi-complete application that provides a

reusable, common structure that can be shared between
applications.

• Developers incorporate the framework in their own
application an extend it to meet their specific needs.

• Unit Test: A unit test examines the behavior of a
distinct unit of work.

• The “distinct unit of work” is often (but not always) a
single method.

XUNIT DESIGN

 JUnit 3.x design was
compliant with xUnit
framework guidelines

<<interface>>
Test

TestCase TestSuite

MyTestCase

*

- JUnit
- CppUnit
- PyUnit
- NUnit
- XMLUnit
- PHPUnit
- RUnit
- SUnit
-

WHY A FRAMEWORK IS NEEDED?

Let’s do a very dummy example...

Q: How would you test this method?

VERY SIMPLE TESTING STRATEGY

Q: How would you improve it?

IMPROVED (NAIVE) SOLUTION

LESSON LEARNED

Objective Test + Repeatable Test = Simple Test Program

Disclaimer:
The previous example

showed a naive way to test
(a.k.a. the wrong one)

That was not JUnit!!

JAVA UNIT TESTING FRAMEWORK
• JUnit is a simple, open source framework to write and run repeatable

tests.

• It is an instance of the xUnit architecture for unit testing frameworks.

• (source: http://junit.org)

• JUnit features include:

• Assertions for testing expected results

• Test fixtures for sharing common test data

• Test runners for running tests

JUNIT 3.X DESIGN RULES

• All the Test classes must extend TestCase

• Functionalities by inheritance

• All the test method's names must start with the “keyword”
test in order to be executed by the framework

• testSomething(...)

• testSomethingElse()

JUNIT TEST EXAMPLE

JUNIT 4.X DESIGN
• Main features inspired from other Java Unit Testing Frameworks

• TestNG

• Test Method Annotations

• Requires Java5+ instead of Java 1.2+

• Main Method Annotations

• @Before, @After

• @Test, @Ignore

• @SuiteClasses, @RunWith

JUNIT TEST ANNOTATIONS

• @Test public void method()

• Annotation @Test identifies that this method is a test method.

• @Before public void method()

• Will perform the method() before each test.

• This method can prepare the test environment

• E.g. read input data, initialize the class, ...

• @After public void method()

JAVA ANNOTATIONS AT GLANCE
• Meta Data Tagging

• java.lang.annotation

• java.lang.annotation.ElementType

• FIELD

• METHOD

• CLASS

• Target

• Specify to which ElementType is applied

• Retention

• Specify how long annotation should be available

@TEST ANNOTATION

JUNIT ANNOTATIONS (2)
• @Ignore

• Will ignore the test method

• E.g. Useful if the underlying code has been changed and the test has not yet
been adapted.

• @Test(expected=Exception.class)

• Tests if the method throws the named exception.

• @Test(timeout=100)

• Fails if the method takes longer than 100 milliseconds.

JUNIT ASSERT STATEMENTS
• assertNotNull([message], object)

• Test passes if Object is not null.

• assertNull([message], object)

• Test passes if Object is null.

• assertEquals([message],expected, actual)

• Asserts equality of two values

• assertTrue(true|false)

• Test passes if condition is True

• assertNotSame([message], expected, actual)

• Test passes if the two Objects are not the same Object

• assertSame([message], expected, actual)

• Test passes if the two Objects are the same Object

TESTING EXCEPTION HANDLING
try-catch trick!

TESTING THE EXCEPTION HANDLING
THE NEW WAY!

Use the expected parameter of @Test annotation

TESTCALCULATOR JUNIT 4

TestAnnotation

JUnit Assert

THE TEST FAILS!
(as expected)

IDE: IntelliJ IDEA 12 CE

http://www.jetbrains.com/idea/

http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/

REFERENCES 1/2

Professional Java JDK 5 Edition
Richardson et. al., Wrox Publications 2006

JUnit in Action, 2nd Ed.
Massol et al. , Manning Pubs 2009

REFERENCES 2/2
Unit Test Frameworks
Tools for High-Quality Software Development
Paul Hamill, O’Reilly Media 2004

Kent Beck’s Original Testing
Framework Paper

http://www.xprogramming.com/testfram.htm

http://www.xprogramming.com/testfram.htm
http://www.xprogramming.com/testfram.htm

